Network‐based semisupervised clustering
نویسندگان
چکیده
منابع مشابه
Phase transitions in semisupervised clustering of sparse networks
Predicting labels of nodes in a network, such as community memberships or demographic variables, is an important problem with applications in social and biological networks. A recently discovered phase transition puts fundamental limits on the accuracy of these predictions if we have access only to the network topology. However, if we know the correct labels of some fraction α of the nodes, we ...
متن کاملFeature Selection Algorithm for Supervised and Semisupervised Clustering
−In clustering process, semi-supervised learning is a tutorial of contrivance learning methods that make usage of both labeled and unlabeled data for training characteristically a trifling quantity of labeled data with a great quantity of unlabeled data. Semi-supervised learning cascades in the middle of unsupervised learning (without any labeled training data) and supervised learning (with com...
متن کاملSemisupervised Clustering, AND-Queries and Locally Encodable Source Coding
Source coding is the canonical problem of data compression in information theory. In a locally encodable source coding, each compressed bit depends on only few bits of the input. In this paper, we show that a recently popular model of semisupervised clustering is equivalent to locally encodable source coding. In this model, the task is to perform multiclass labeling of unlabeled elements. At th...
متن کاملSupervised and Semisupervised Clustering Based on Feature Selection Algorithm Process
In clustering process, semi-supervised learning is a tutorial of contrivance learning methods that make usage of both labeled and unlabeled data for training characteristically a trifling quantity of labeled data with a great quantity of unlabeled data. Semi-supervised learning cascades in the middle of unsupervised learning (without any labeled training data) and supervised learning (with comp...
متن کاملA New Homogeneity Inter-Clusters Measure in SemiSupervised Clustering
Many studies in data mining have proposed a new learning called semi-Supervised. Such type of learning combines unlabeled and labeled data which are hard to obtain. However, in unsupervised methods, the only unlabeled data are used. The problem of significance and the effectiveness of semi-supervised clustering results is becoming of main importance. This paper pursues the thesis that muchgreat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Stochastic Models in Business and Industry
سال: 2021
ISSN: ['1526-4025', '1524-1904']
DOI: https://doi.org/10.1002/asmb.2618